Which is best for describing how aircraft get the needed lift to fly? Bernoulli's equation or Newton's laws and conservation of momentum? This has been an extremely active debate among those who love flying and are involved in the field. If the question is "Which is physically correct?" then the answer is clear -- both are correct. Both are based on valid principles of physics. The Bernoulli equation is simply a statement of the principle of conservation of energy in fluids. Conservation of momentum and Newton's 3rd law are equally valid as foundation principles of nature - we do not see them violated. This physical validity will undoubtedly not quell the debate, and this treatment will not settle it. But perhaps it can at least indicate the lines of the discussion.
Those who argue against modeling the lift process with the Bernoulli equation point to the fact that the flow is not incompressible, and therefore the density changes in the air should be taken into account. This is true -- the ideal gas law should be obeyed and density changes will inevitably result. This does not render the Bernoulli equation invalid, it just makes it harder to apply. But the pragmatic success of modeling the lift with Bernoulli, neglecting density changes, suggests that the density changes are small. Pragmatic difficulties exist also for those who would model the lift from Newton's third law -- it is difficult to measure the downward force associated with the downwash because is is distributed in the airstream leaving the trailing edge of the airfoil. Detractors from the Bernoulli approach often make calculations using the Kutta-Joukowski theorem.